

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 170-174 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0210170174 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 170

Organisation of Threads in Operating Systems

Karthik Raja K,Sujith D, Vignesh R, Dr.M.Sujithra M.C.A, M.Phil.,

PhD, Dr.A.D. Chitra M.C.A, M.Phil., PhD,

2
nd

 Year, M.Sc. Software Systems (Integrated), Coimbatore Institute of Technology, Coimbatore

Assistant Professor, Department of Data Science, Coimbatore Institute of Technology, Coimbatore.

Assistant Professor, Department of Software Systems, Coimbatore Institute of Technology, Coimbatore.

Date of Submission: 20-11-2020 Date of Acceptance: 06-12-2020

ABSTRACT: The core functionality of Operating

Systems (OS) is to keep flow of processes or

execution of system running. The OS enforces flow

of execution and smooth running of processes

through implementing several hardware techniques,

software applications and algorithms. This paper

basically deals with threads used in an operating

system. We have focused on the working and the

ways of multithreaded system, how they are used to

write a program in an efficient and effective way.

This paper explains about what is an operating

system andthe concepts of Threads in an operating

system (OS).

KEYWORDS: Threads, multithread, effective,

efficient, OS.

I. INTRODUCTION:
An operating system (OS) is software that

controls computer hardware and software resources

and provides common services for computer

program. The operating system is an essential

component of the software program in a computer

system. Application programs usually require an

operating system to function. For hardware

functions such as input and output and memory

allocation the operating system acts as an

intermediary between programs and the computer

hardware, although the application code is usually

executed directly by the hardware and will

frequently make a system call to an OS function or

be interrupted by it.

Examples of popular modern operating

systems include Android, iOS, Linux, Microsoft

windows and many more.

We shall now see how process

management is done in OS to effectively keep the

flow of the system with use of threads.

II. THREADS:
A thread is a single sequence stream

within a process. They are sometimes called

lightweight processes.In many perspective, threads

are popular way to improve application through

parallelism. The CPU switches rapidly back and

forth among the threads giving illusion that the

threads are running in parallel.

A thread consists of

 A program counter,

 A stack,

 A set of registers.

We use threads due to many reasons. Threads

plays a key role in the designing of an operating

system. A process with multiple threads makes a

great server for example printer server. Because

threads can share common data, they do not need to

use inter process communication.Because of the

very nature, threads can take advantage of

multiprocessors.

2.1. Thread Libraries

 Thread libraries provide programmers with an

API for creating and managing threads.

 Thread libraries may be implemented either in

user space or in kernel space. The former

involves API functions implemented solely

within user space, with no kernel support. The

latter involves system calls, and requires a

kernel with thread library support.

 There are three main thread libraries in use

today:

1. POSIX-Pthreads - may be provided as either

a user or kernel library, as an extension to the

POSIX standard.

2. Win32 threads - provided as a kernel-level

library on Windows systems.

3. Java threads - Since Java generally runs on a

Java Virtual Machine, the implementation of

threads is based upon whatever OS and

hardware the JVM is running on, i.e. either

pthreads or Win32 threads depending on the

system.

III. MULTI-THREADING
The ability of an OS to support multiple,

concurrent paths of execution within a single

process.Multithreading is mainly found in

multitasking operating systems. Multithreading is a

widespread programming and execution model that

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 170-174 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0210170174 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 171

allows multiple threads to exist within the context

of a single process. These threads share the

process's resources, but are able to execute

independently. The threaded programming model

provides developers with a useful abstraction of

concurrent execution. Multithreading can also be

applied to a single process to enable parallel

execution on a multiprocessing system.

Most of the state information dealing with

execution is maintained in thread-level data

structures

 Suspending a process involves suspending all

threads of the process

 Termination of a process terminates all threads

within the process

Each thread has:

 An execution state (Running, Ready, Blocked)

 Saved thread context when not running

 An execution stack

 Some per-thread static storage for local

variables

 Access to the memory and resources of its

process (all threads of a process share this)

The key states for a thread are:

 Running - The process is active and running

and being executed.

 Ready - The process is in a Ready state and

waiting for its execution.

 Blocked - The process is in a state that cannot

start its execution until some specific

interruption occurs. That could be an I/O

completion or any other interrupt.

3.1. Thread Synchronization

 It is necessary to synchronize the activities of

the various threads

 All threads of a process share the same address

space and other resources

 Any alteration of a resource by one thread

affects the other threads in the same process

3.2. Benefits of Threads

 Takes less time to create and terminate a thread

than a process

 Context switching are fast when working with

threads.

 Enhance efficiency in communication between

programs

 Threads are cheap as they only need a stack

and storage for registers therefore, threads are

cheap to create.

3.3. Single Threaded Approaches

A single thread of execution per process,

in which the concept of a thread is not recognized,

is referred to as a single-threaded approach. MS-

DOS is an example

FIGURE 1: SINGLE THREADED PROCESS

3.4. Multi-Threaded Approaches

Multithreading - The ability of an OS to

support multiple, concurrent paths of execution

within a single process. These threads share the

process's resources, but are able to execute

independently.

Multithreading can also be applied to a

single process to enable parallel execution on a

multiprocessing system.A Java run-time

environment is an example of a system of one

process with multiple threads

FIGURE 2: MULTI THREADED PROCESS

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 170-174 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0210170174 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 172

3.5. TYPES OF THREADS

Two types of threads

 User level threads

 Kernel level threads

FIGURE 3: KERNEL AND USER SPACE

3.5.1. User-level threads

 Created and managed by a threads library that

runs in the user space of a processwithout

kernel support

 Only a single user-level thread within a

process can execute at a time

 If one thread blocks, the entire process is

blocked

Advantages of User-Level Threads

Some of the advantages of user-level threads are as

follows −

 User-level threads are easier and faster to

create than kernel-level threads. They can also

be more easily managed.

 User-level threads can be run on any operating

system.

 There are no kernel mode privileges required

for thread switching in user-level threads.

Disadvantages of User-Level Threads

Some of the disadvantages of user-level threads are

as follows −

 Multithreaded applications in user-level

threads cannot use multiprocessing to their

advantage.

 The entire process is blocked if one user-level

thread performs blocking operation.

3.5.2. Kernel-level threads

 Kernel threads are supported within the kernel

of the OS itself.

 Threads within a process that are maintained

by the kernel

 Multiple threads within the same process can

execute in parallel on a multiprocessor

 Blocking of a thread does not block the entire

process

Advantages of Kernel-Level Threads

Some of the advantages of kernel-level threads are

as follows −

 Multiple threads of the same process can be

scheduled on different processors in kernel-

level threads.

 The kernel routines can also be multithreaded.

 If a kernel-level thread is blocked, another

thread of the same process can be scheduled by

the kernel.

Disadvantages of Kernel-Level Threads

Some of the disadvantages of kernel-level threads

are as follows −

 A mode switch to kernel mode is required to

transfer control from one thread to another in a

process.

 Kernel-level threads are slower to create as

well as manage as compared to user-level

threads.

IV. STRATEGIES OF MAPPING USER

THREAD TO A KERNAL THREAD
In a specific implementation, the user

threads must be mapped to kernel threads, using

one of the following strategies.

4.1. Many to one

 Where many user level threads are mapped to a

single kernel thread.

 In such model the thread is managed by thread

library in the user space which makes such

model efficient.

 However, the entire threads can be blocked if a

thread makes a blocking system call.

 With multiprocessors system, threads can

access the kernel with only a single thread at a

time, multiple threads are unable to take

advantage on multiprocessor and run in

parallel on multiprocessors.

 With such model, developer will be able to

create as many threads as required, however,

the true concurrency is not implemented since

the kernel can schedule only one thread at a

time.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 170-174 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0210170174 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 173

FIGURE 4: MANY TO ONE MODEL

4.2. One to one

 Where each user thread is mapped to a kernel

thread.

 Such mechanism provides concurrency

operation than the many-to–one model where

other threads are allowed to even when one of

these threads makes a blocking system call.

 Also, such system allows multiple threads to

run in parallel on multiprocessors.

 Since such model creates a corresponding

kernel thread with every creating of user

thread, an overhead of creating kernel threads

can affect the performance of an application

and as such this implementation can be

restricted with the number of threads that can

be supported be the system.

 Linux and Windows from 95 to XP implement

the one-to-one model for threads.

FIGURE 5: ONE TO ONE MODEL

4.3. Many to many

 The many to many modelmaps any number of

user threads onto an equal or smaller, number

of kernel threads, combining the best of the

one-to –one and many to one models.

 Users have no restrictions on the number of

threads created.

 Blocking kernel system calls do not block the

entire process.

 Processed can be split across multiple process.

Individual processes may be allocated variable

number of kernel threads.

FIGURE 6: MANY TO MANY MODEL

TABLE 1:

STRATERGIES OF MAPPING USER

THREAD TO KERNEL THREAD

 Restrictions on

the number of

threads

Blocking

kernel

system calls

Many

to one

Users have no

restrictions on

the number of

threads created.

Blocking a

kernel system

calls blocks

the entire

process.

One to

one

Number of user

threads can be

restricted with

the number of

kernel threads

that can be

supported be the

system.

Blocking

kernel system

calls do not

block the

entire

process.

Many Users have no Blocking

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 170-174 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0210170174 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 174

to

many

restrictions on

the number of

threads created.

kernel system

calls do not

block the

entire

process.

V. EXAMPLE OF THREADSINA WEB

SERVER
Multiple web browsers (or browser

window/tabs) connecting to the server at the same

time should launch multiple threads in the server.

Multiple threads allow multiple requests to be

satisfied simultaneously, without having to service

requests sequentially or to remove separate

processes for every incoming request.Better Multi-

Threaded Web Server that Handles More HTTP

FIGURE 7: THREADING IN SERVER

ARCHITECTURE

VI. CONCLUSION
A thread is a flow of control with a

process and it is more efficient and more

productive for a process to have multiple threads to

achieve the maximum efficiency of any computing

system (Titus, 2004). For example, with a server

that can support multithreaded processes, such

server can create several threads based on the

client’s requests. Multithreading allows application

to be more interactive since the program can

continue running even when part of such program’s

thread is blocked or is involved in a lengthy

operation. Also, with multiprocessor architecture

that is exist in modern computing system, different

threads can run in parallel on different processors.

REFERENCES:
[1]. Abraham Silberschatz, Greg Gagne, and

Peter Baer Galvin, "Operating System

Concepts, Ninth Edition ", Chapter 4

[2]. https://home.ubalt.edu/abento/454/kernelpro

cesses/kernelprocesses.ppt

[3]. https://www.geeksforgeeks.org/thread-in-

operating-system/

[4]. https://www.tutorialspoint.com/operating_sy

stem/os_multi_threading.htm

https://home.ubalt.edu/abento/454/kernelprocesses/kernelprocesses.ppt
https://home.ubalt.edu/abento/454/kernelprocesses/kernelprocesses.ppt
https://www.geeksforgeeks.org/thread-in-operating-system/
https://www.geeksforgeeks.org/thread-in-operating-system/
https://www.tutorialspoint.com/operating_system/os_multi_threading.htm
https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

